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ABSTRACT

We present the results of a Monte Carlo Study of the power
of a new multivariate goodness-of-fit test.

INTRODUCTION

Foutz [1] developed a new test of goodness-of-fit for multi-
variate distributions. The test can also be used to fit univariate

//———ﬂ&%strtbutiens;>lh an earlier paper [f] the authors compared the

Fout: test with the Chi-square and Kolmogorov-Smirnov test. The
results indicated that the Fout: test is more powerful in detecting
certain characteristics than the other two tests. This paper deals
with the performance of the test when fitting multivariate distri-

butions. More specifically we—%n¥e§¥égate the power of the test

when fitting bivariate and trivariate normal distributions for vt
various choices of the meanyector and the covariance matrix}s In
15 pgesened

the second section we resent\a brief description of the Fout:
test; a discussion of the simulation procedure is in the third sec-

tion and the results of the simulation are in the final section. <f~'




THE FOUTZ TEST

Let X;, X5,...,X ; be a random sample of size n-1 from a

p-variate continuous distribution. The first step of the Fout:

F! test is to divide the sample space into n statistically equivalent
blocks 81,52,...,Bn and then determine a '"continuous empirical

distribution function (CEDF)'" Hn. The test statistic for the hypo-

thesis that the true c-d.f is H is

- Sup _ .
Fn all events 8 Pn(s) pH(B) (1

where P (8) and PH(B) are the empirical and hypothesized probabi-
lity measures of an event 8, computed from Hn and H respectively.
An equivalent computational formula for Fn is

L
n

2 1

P[X = BilH].

A general procedure for the construction of statistically equi-
valent blocks is the following. Select n - 1 "cutting functions"
hk(X), k=1, 2,...,n-1, such that hk(§J has a continuous distri-
bution, and a permutation kl’k2""’kn-1 of the integers 1,2,...,n-1.
- Order the samples X according to the value of hk (Xi); let Xﬁkl) be
= the vector associated with the klth order statistic. Partition the

where Di

sample space into two blocks B1 and B, defined by
‘ =(X: hy ( = B¢
By={X: hkltg) < hk1 [i(kl)]} and B, = By .
At the second step, if k2 < kl, order the k1 sample vectors in 31
according to hk (X) and let g(kz) be the k,th order statistic. Par-
2 -

e tition B1 into two sub-blocks B11 and Blz; at this stage the sample
space is partitioned into three blocks Bll’ B17 and B,0 = B,. If

k, > kl’ order then - 1 - k1 sample values in the block B,
according to hk_(ﬁ). Let X(kz) be the (k2 - kl)th nrder statistic

~
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and partition the block B2 into two sub-blocks B21 and B
Bjo =
exhausted; this results in a partition of the sample space into n
statistically equivalent blocks 81> 62,..., Bn. More details on
the procedure and some examples are available in [3].

,~5 take
Bl‘ Continue the process until all the cutting functions ave

The null c-d-f of the test statistic F (necessary to deter-
mine the critical values) is quite difficult to derive even for
small n; forn =3, 4, 5 formulas for the exact c-d-f are in [2].
Foutz proposed a large sample normal approximation with mean
1 and o = (Ze'1 - Se-2)/n. In our earlier study [2] we found
that with this approximation the observed significance level is

u=e

about 10-20% smaller than the nominal values for sample sizen - 1 =
20, 30, 50. We therefore proposed the use of empirically generated
(based on 80,000 simulated Fn values) critical points in Table I
below.

TABLE I. EMPIRICAL CRITICAL VALUES FOR FOUTZ TEST

Sample Size 20 30 50
Significance level

.10 .42714 .41903 .40816

.05 .44865 .43533 .42116

.01 .48659 .46579 .44487

We have also generated a variation of the large sample normal
approximation to calculate more accurate estimates of the critical
values. We are presently in the process of using this approxima-
tion to generate tables for a spectrum of critical values and
sample sizes.

SIMULATION PROCEDURE

To investigate the power of the Foutz test 5,000 replicates
g each of samples of size 20 from several bivariate and trivariate
$
’u
P,
:
: 3
{
k. e o . N )
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normal distributions were generated; in all cases the hypothesis
tested was that the samples are from a bivariate/trivariate normal
distribution with zero mean vector and covariance matrix the Iden-
tity. The true values of the means, variances and covariances for
the generated samples were chosen so as to study the effect of

(1) shifts in the means only (ii) shifts in the variances only
(iii) shifts in covariances only and few cases involving a combina-
tion of all three.

The method of blocking we implemented was as follows. We let
the samples themselves implicitly determine the permutation kl’ kZ’
..+, k,_; and the order of the cutting functions which were all
taken to be coordinate functions i.e., h, (X) = ﬁfl) the 1" coordi-
nate of the sample vector X, for some i. IThe following example
with p = 2 (bivariate samples) will illustrate the procedure. Sup-
pose Xy, X5, ..., X, ; are the observed sample vectors. The first
cut on the p-dimensional sample space is made at §£1) the first
coordinate of the first sample vector X - This partitions the sam-
ple space into two blocks Bl’ B2 defined by

an

ISt coordinate coordinate
1
B, (=, x{M] (-, +=)
(1) w +m

The second sample vector x, will be in one of the two blocks
B1 or B,. Assume that it is in BZ; partition BZ into two sub-blocks

st nd

17" coordinate 2" coordinate
9
321 (i(l)’ °°) ('”9 igb)]
i
B2 (ﬁil)v +=) (x§?), )
1
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where x.

£

vector X,. At this stage the sample space is partitioned into

is the value of the second coordinate of the sample

three blocks BiO’BZI and Bzz.thContinuing thi? process életting
1) the rt

of the 5q where r = [ (q-1) mod p + 1] ) until all the sample vec-

the cutting function at the q stage to be x coordinate
tors are exhausted will result in a partition of the sample space
into n statistically equivalent blocks. In our simulation we
used both rectangular and polar/spherical coordinates to examine

if one scheme is more adept at detecting certain types of violations
of the null hypothesis. When using spherical coordinates the first
coordinate is taken to be the radius vector (same for polar coordi-

nates), the second coordinate is the angle in the horizontal plane

and the third coordinate is the angle measurced from the vertical axis.

Figures 1 and 2 granhically demonstrate the construction of the
blocks for five bivariate samples using the rectangular and polar
coordinate systems. The implicit permutation and the order of the
coordinate cutting .‘unctions are also included in the figures. It
should be noted tha: for polar/spherical coordinates it is necessary
to make an additional initial cut, which we took at 8 = 0°.

The probability contents of the statistically equivalent blocks
under the null hypothesis (multivariate normal with Zero mean vector
and covariance matr:x the Identity) are easily computable as products
of univariate probabilities (normal, Chi square and uniform) for the
rectangular coordiniate system as well as the polar/spherical coordi-
nate system.

RESULTS
For ease of comprehension, the results for shifts of mean or
variance/covariance are given as power curves in Figures 3 - 7.
All power curves are¢ based on 5,000 replications at the .05 signi-
ficance level. The results are indicative of those obtained for
significance levels of .01 and .1. Full details are available in




..........

Linhart [3].

Shifts in mean are detected well. Figures 3 and 4 show that a
shift of one standard deviation in the mean results in about a 60%
rejection rate for both bivariate and trivariate samples. The
rectangular method of blocking consistently resulted in a higher
rejection rate than did the polar/spherical method.

Power curves for shifts in variance are given in Figures 5 and
6. Small shifts in variance are not detected very well, but larger
shifts and shifts in more than one component resulted in higher
rejection rates. Neither blocking method produced rejection rates
significantly better than the other except in the trivariate case
when one variance was shifted. In general, the polar/spherical
method of blocking gives slightly higher rejection rates, but not
consistently.

The power curves for shifts in covariance are given in Figure
7. Except for highly correlated data, neither blocking scheme
detects these shifts very well. The polar/spherical method of
blocking usually gives somewhat higher rejection rates than the
rectangular method.

To test for possible confounding in detection of shifts in
both mean and variance/covariance, we made the series of runs
listed in Tables II and III. Shifts are generally of increasing
amount as one looks down and to the right in the tables. It is
also true that rejection rates increase as one looks down and to
the right, indicating there is no detectable confounding. The
rectangular method of blocking generally gave better results with
multiple shifts.

All of the above results are based on a sample size of 20 and
significance level of .05. To determine possible trends over sample
size or significance level we made the series of runs given in
Tables IV and V. Larger sample sizes generally led to higher rejec-
tion rates, as is to be anticipated. Violations of this did occur

Al e & . oA




when rejection rates were close to the significance level, i.e.,
the shift was not detected very well. The rectangular blocking
method generally gave higher rejection rates.

In conclusion, the Foutz test is adept at detecting shifts in
mean, less powerful at detecting shifts in variance, and poor iun
detecting correlated variates unless they are highly correlated.
In addition, shifts in mean are not disguised when a shift in
variance/covariance is also present.

~3
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TABLE II

REJECTION RATES FOR MULTIPLE SHIFTS IN
MEAN AND VARIANCE-COVARIANCE

01

Sigma <1 0

.0488
.0482

) .1710
.1388

) . 5606
.4348

.9418
.8576

.9998
.9950

) (o

.0912
.1176

.2398
.2482

.7346
.5952

.8774
.8588

.9998
.9990

a= .05, n=21*

.1986
.1522

.3110
.2498

.6384
.5334

.9350
.8722

.9902
L9772

969 (

849

.2500
.2162

.3702
.3402

.6828
.6316

.8658
.8308

.9950
.9882

)|

* First Entry - Rectangular coordinate blocking
Second Entry - Polar coordinate blocking

15

5 1
1.34

.9658
.9572

.9720
.9650

.9820
.9764

.9892
.9840

.9990
.9964

: 34)
5

/




\ TABLE III

REJECTION RATES FOR MULTIPLE SHIFTS IN
MEAN AND VARIANCE-COVARIANCE

0 0
10
01

a = .05, n=21*

1 0 .6 5 0 0 10 0 .95
01 0 01 0 29 1 0
6 0 1 0 01 95 0 1

wn
%n
NN
OO
"B oo
~——

ey

-

.0440 .0674 .5392 .7828 .9770
.0518 .0582 .4584 .7840 .9720

.0480 .1830 .5708 .7946 .9832
.0280 .1176 .5034 .8020 .9740

AT YT ey

1174 .2912 .6254 .8422 .9824

.7400 .9074 .9270 .9668 .9930
.7392 .7454 .8602 .9454 .9870

.9982 .9956 .9716 .9736 .9978
.9726 .9752 .9742 .9774 .9976

> .3728 .6352 .6852 .8206 .0888

B - DARMEMAREN

: * First Entry - Rectangular coordinate blocking
‘ Second Entry - Polar coordinate blocking
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, ) TABLE IV
REJECTION RATES FOR INCREASING SAMPLE SIZES

Sample size (n-1) 20 30 50
! Shift a = .01
v u = ( 5 ) .0574 0860 1270
. 0 .0430 .0564 0754
t
| 4= ( 5 .1294 2026 3652
1 5 ) .1230 1418 2508
f = ( 1 3) .0126 .0140 0176
301 .0136 .0152 0170
L= (1 0) .1864 2722 4522
: 0 3 .1578 2244 3743
O e R PEERRP P TERRIEES
_ a = .08
; u = ( 5) .1710 .2170 2914
; 0 .1388 .1630 2238
‘i u o= ( 5) .3024 .4144 6030
\ 5 .3164 .3076 482
-
: g = ( 1 .3 ) .0576 .0624 0728
301 .0656 .062 0760
[ T = ( 1 0 ) . .3786 4884 6756
0 3 .3342 4304 6016
a=.,10
u = ( 5) 2700 3228 4256
0 2298 2658 3400
u = ( 5 ) 1406 3424 7190
5 4534 4336 6066
g = ( 1 .3 ) 1178 1174 1396
3001 1258 .1196 1422
T = ( 1 0 ) 5150 .6132 7800
0 3 3640 .5566 7160

First Entry - Rectangular coordinate blocking
Second Entry - Polar coordinate blocking
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1
- TABLE V
5 REJECTION RATES FOR INCREASING SAMPLE SIZES
:‘ Sample size (n-1) 20 30 50
~ Shift a = .01
: e (.5 .0480 .0680 .1036
g 0 .0280 .0362 .0526
: 0
t! w= /.5 .1738 .2932 .5040
¢ .5 .0848 .1662 .3428
- .S
- £ts /1 0 .3 .0106 .0138 .0148
. 01 o .0124 0134 .0144
3 3 00 1
" t= (3 0 O .1606 .2054 .3528
0 1 0 .0838 .1138 .2080
0 0 1
a = 05
g u= /.5 .1438 .1974 .2742
¢ 0 .1036 .1256 .1646
0
u= /.5 .3642 .5118 .7268
.5 ) .2198 .3588 .5868
, .5
-
t= (1 0 .3 .0468 .0588 .0656
" 0 u 0 .0512 .0488 .0540
3 3o
: t= (3 0 0 .3438 .3976 .5734
3 0 1 n .2074 .2708 L4126
. 0o 0 1
* a=.10
u= /.5 .2484 .3024 .387
- 0 > .1874 L2132 .2650
\ 0
y= /.5 .4948 .6396 .8272
f .S .3584 4912 .7040
: .5
t= (1 0 .5 .0972 1142 .1232
0 1 0 .1086 .1030 .1102
30 1
t= (3 0 0 4736 .5264 . 2880
0 1 o0 .3156 .3880 .3450
0 0 1

...................................................................

First Entry - Rectangular coordinate blocking
Second Entry - Polar coordinate blocking
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